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U-"^.-tr. 1.   EXECUTIVE SUMMARY 

This final report describes the results of a three-year project in an ongoing 

basic research effort to develop techniques for the automatic recognition of speech 

sounds (phonemes) in unrestricted continuous speech. A basic working phonetic 

recognition system has been designed, implemented on a VAX 11/760, and tested. At 

over 75% phonetic accuracy, the results have already exceeded previously-published 

phonetic recognition results on continuous speech for a single speaker.    Our future "v ■".'■ 
goal will be to increase the recognition accuracy to over 80% for many speakers. 

Our first major milestone was reached in August 1983 when we completed our 

initial phonetic recognition system. The system was based on a hidden Markov model 

(HMM)   of   speech   spectral   parameter   movements   in   each   phoneme.      The   HMM   is   a 

flexible mathematical tool that is especially suited to modeling variabilities in time and ^Jui-: 

space (in this case, frequency spectrum).    The major innovation in our work was that ^T" 

the basic HMM algorithm was capable of including the effects of left and right contexts '•"•'-' 

in modelling each phoneme.    We have demonstrated that our context-dependent models '/-V 

result  in  significantly higher  recognition  accuracy than  context-independent  models. >'. / 

Furthermore, we have developed methods that determine the extent to which context ■ 
should be included, based on the amount of speech data available to train the system. 

Another important aspect of the work is that the training procedures we have used •■/ 

ere largely automatic and require little human interaction. !*-*.' 

In June 1984 #• completed another major milestone in designing and 

implementing a capability to incorporate acoustic-phonetic knowledge (in the form of 

acoustic-phonetic   features)   into   a   probabilistic   hidden   Markov   formalism.      In   our .   ,'•', 

system,  the  categorical  decisions usually  associated with  heuristic  acoustic-phonetic 

algorithms are replaced by automatic training techniques and global search strategies. "?TT 

The acoustic-phonetic features are expected to improve the system's ability to make !•'"•■", 

fine phonetic distinctions.    To test this new system capability, we added features that v'-]--'. 
• " •  *   ■ 

help in discriminating among the unvoiced plosives [p, t, k].    (The features measured •."'.. 

the frequency  and  energy level  of the  plosive  burst.)     The  recognition  rate  for  the —J^- 

unvoiced  plosives  in  continuous  speech  increased  from  61% when using  the  spectral ■>."',•" 

HMMs to 85% after the burst features were included.    The recognition accuracy of the t-\''\ 

other phonemes was not affected in the process.    We expect the overall performance '-S'^ 

to  improve   further   by  the   incorporation   of   large   numbers   of   additional   acoustic- .•_ 

phonetic features. '.'••.'•: 

.-- > 
tt^&^3^&£^^ 
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Finallr. a considerehle effort has enabled us to reduce the computation, virtual 

address space, and file storage needed for the various programs and data structures 

by at least an order of magnitude each. This has made it possible to perform 

significantly more experiments than were previously possible. In particular, our new 

time-synchronous, pruned search for phoneme sequences has resulted in two orders 

of magnitude increase in speed over best-first search algorithms. 

'/■v>.-v 
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8.   INTRODUCTION 

2.1   Phonetic Recognition 

Automatic speecii recognition for constrained applications is now feasible. The 

constraints may be a limitation on the vocabulary size, the branching factor of the 

grammar, the number of speakers, or a requirement for isolated words. A major 

breakthrough in the ability to distinguish between similar words reliably is needed 

before unconstrained speech recognition can be achieved. Therefore, the primary 

emphasis in our research in recent years has been in recognizing the phonemes in 

continuous speech without the aid of a constraining factor such as a phonetic 

dictionary. Only after adequate phonetic recognition performance has been achieved, 

would we attempt to build a large scale, unconstrained speech recognition system. 

While there are as many measures of phonetic recognition accuracy as there are 

phonetic recognizers, it is clear that minimvm accuracies of 80%-90% are necessary to 

support large scale speech recognition. Our experiments with phonetic vocoders 

showed that human listeners could understand the output speech only if at least 80% 

of the phonemes were .r^rectly recognized [l]. Also, extrapolation from phonetically 

based speech recognition systems would predict that about 90% correct phonetic 

recognition may be necessary if vocabulary and grammatical constraints are weak 

[2. 31. 

That speech recognition should be based on phonetic recognition may not be 

immediately clear. Indeed, for moderate vocabularies of a few hundred words, where 

training all the words is possible, it has been shown that recognition based on a word 

mocf». achieves higher performance [4]. All commercially available speech recognizers 

als', use word models. However, for very large vocabularies, it is not practical to ask 

each user of a speech recognition system to say each of the words in many different 

contexts. If the system were intended to be speaker-independent, the one-time cost 

of having many speakers say all the words may be acceptable, but there still remains 

the problem of predicting phonological variability both within the word and between 

words, which may be more easily done using a phoneme model for words. Also, the 

added variability due to multiple speakers might make the recognition problem too 

difficult. For these reasons, it is generally assumed that the many words would be 

modeled in terms of their phonetic spellings. A new speaker would first read enough 

speech for the  system to adapt the models of the phonemes to that speaker.    Then, 

.   ■ 

IJL 
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the system would use the speaker-dependent set of phonetic models with the phonetic 

dictionary to model the words. 

2.2 Approach 

Our basic approach to phonetic recognition can be characterized as combining 

multiple sources of knowledge to achieve the advantages of each knowledge source. 

We have applied this principle in three areas related to phonetic recognition: the 

modeling of phonetic context, the combined use of spectral features and acoustic- 

phonetic features, and the application of probabilistic phonotactic constraints. 

2.3 Review of Problem 

In this section we discuss the particular problems that we are attempting to 

solve. 

2.3.1   Phonetic Context 

If the basic acoustic model used for speech recognition represents the phoneme, 

the implicit assumption is made that the acoustic realization of the phoneme is 

independent of the phonetic context in which it appears. Of course, we know that 

phonemes are affected significantly - particularly near the transitions - by the 

neighboring phonemes. There have been several attempts to account for the effects of 

phonetic context The HUM approach can account for this effect by modeling each 

part of the phoneme separately. Thus, the probability density function (pdf) that 

represents the beginning and end of the phoneme will have a wider variance, or (in 

the case of a discrete pdf) allow for more possible spectra than will the middle part of 

the phoneme, which is less affected by phonetic context. However, this widening of 

the pdfs at the phoneme transitions does not correctly reflect the conditional relation 

between the acoustics of a phoneire and its neighboring phonemes. 

As a result, there have been many suggestions to model the acoustics of units 

larger than phonemes, such as diphones [5, 6], demisyllables [7], syllables [8, 9], etc. 

The longer acoustic units implicitly account for the coarticulatory effects of the 

phonemes within the unit on each other. For example, a model of the syllable unit 

implicitly accounts for the effect of consonants on the vowel in the same syllable. A 

dinhone  unit  models  the  transition between the two phonemes.     The  coarticulatory 

:*.. jb.. , •'. -•. AV-."• 
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effects between acoustic units are assumed to be negligible. In our work, we use a 

model of the pho&'me conditioned on the phonetic context, which explicitly takes into 

account the effects of context. 

The major difficulty in modeling contextual effects is that the number of these 

longer units or contexts of interest is very large. For instance, there are about 2,500 

diphones and about 10,000 syllables in English. Therefore, it is impossible to gather 

detailed statistics about the likely acoustic realizations of all of them from a 

reasonable sized data base. In a large database (say one half hour) of naturai 

speech, more than half of the diphones, and most of the possible syllables will not 

occur even once. How, then, can we model those coarticulatory effects which we 

believe to be important for speech recognition? We describe our approach to this 

problem in Section 4. 

2.3.2   Spectral ▼■ Acoustic-Phonetic Features 

Most template matching systems use a model of the short-term power spectrum 

as the basic representation of the speech. The motivation for using spectral features 

for speech recognition is simple. It is well known that intelligible speech can be 

recreated from a sequence of quantized power spectra. Therefore, the distinction 

between different words must be contained in the sequence of spectra. It is also quite 

easy to state the speech recognition problem as a straightforward decoding problem 

using well-known communication theory principles [3]. However, there is the 

widespread belief that other "speech motivated" features should be more useful. These 

features, which we call acoustic-phonetic (AP) features, measure specific aspects of 

the signal spectrum at particular locations within phonemes, and are designed for 

making specialized phonetic distinctions. The canonical example of such a feature in 

the field of vision is the distinction between the letters "0" and "Q". In speech, we 

know features that occupy a very small part of the time-frequency plane contain most 

of the information that is needed to make certain distinctions. For example, in an 

unvoiced plosive, the spectrum during the silence is of no value in distinguishing 

among the phonemes /p, t, k/. The spectrum during the aspiration is mostly a 

function of the following vowel, and depends also on whether the plosive is preceded 

by an /s/. However, the characteristics of the burst and the directions of the 

formant transitions are quite indicative of the plosive (although there is some effect 

due to phonetic context). 

Despite the attraction of these AP features, they suffer from the fact that they 

.. »"M" >   -J"    J*   _• --^ ^>'s>:-- -N-:" ^ 
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are an incomplete set. Tnat is, they cannot be used to reconstruct the speech, add 

therefore, are not guaranteed to contain all the information necessary to understand 

the sp»üch. In this paper, we will present arguments why AP features Jwn still be of 

some beneficial use, and suggest an accommodation of these two approaches that takes 
'-V-V-' 

advantage of the merits of each. S-"-"•"-"■ 

24   Outline 
- v  ■   MW, 

1 " - "   . ' . 

Section S defines and describes the hidden Markov model for a phoneme that we 

use for phonetic recognition. Section 4 discusses the problem of modeling phonetic 

context   and   proposes    a   solution   that   overcomes   the   training   issues   typically £ 

associated with solutions for this problem. The training and recognition procedures 

used in all our experiments are described in Section 5. Sections 6 and 7 present the 

results of phonetic recognition experiments for the E-set problem and for 

unconstrained continuous speech. Sektion 8 contains a discussion of the combined 

use of spectral features and acoustic-phonetic fe^.ures within the same hidden 

Markov formalism.    Finally, Section 9 contains some conclusions that we feel can be -V-V 

drawn from this research, and our plan for the imiuediate future. ■-■.;': 

# *. * 
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3.   PHONETIC HIDDEK MARKOV MODEL 

We have chosen to use a hidden Markov Model (HMM) to represent the time 

variations of a phoneme. We give here a brief description of the use of HMM's. For a 

more complete mathematical review of HMM's, see [10]. Figure 1 illustrates the HMM 

that we use. The most natural way lo explain a HMM is to think of it as a model for 

synthesizing speech [ll]. 

'Left"      "Middle"    "Right" 

FIG.    1.     Hidden Markov Model of a Phoneme. 

In this model there are 5 states represented by circles. As with a Markov chain, 

there is associated with each combination of two states a transition probability (a, j) 

which is the probability of going to state j given that the process is in state i. The 

arrows between states indicate the transitions that we allow (their probabilities are 

nonzer). Unlike a Markov chain, in which each state has associated with it a single 

output, each pdf-state of a HMM has an output probability density (bj). The output 

density gives the probability of each possible output symbol or vector given that the 

process is in that state. The three large open circles are pdf-states of the model. 

The small filled circles are called the initial and terminal states, and do not produce 

any output. 

When using a HMM for synthesis, we first choose at random, according to some 

distribution, the state in which we will start. In our speech model, we must start with 

the initial state.    Then, given the  state i, we pick the next state j according to the 

fi/'&:&i^:'i^^ 
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transition probabilities (aj-), for all j. Once we have chosen a next state, we choose at 

random, among the possible outputs for this new state, according to its output 

probability density (b;). And so on. In this manner, the HMM will create a sequence 

of output symbols. 

Once we have specified the form of a HMM, there are several interesting problems 

that we can solve related to this model. If we have a sequence of output vectors 

(observations) that we are told came from this HMM, we can estimate the parameters of 

the HMM (the a-.'s and the b.'s) using an iterative procedure called the Baum-Welch 

or forward-backward algorithm [12]. Given a HMM with estimates of parameters and a 

sequence of observations, there are several computations one can perform. Using the 

Viterbi algorithm [13], one can efficiently identify and compute the probability of the 

most likely sequence of states to have produced the observed sequence. This (dynamic 

programming) algorithm requires computation that is linear in the number of nonzero 

transitions, and linear in the length of the observation sequence. A similar algorithm 

can be used to compute the probability that the entire HMM (all paths through the 

HMM) would have produced the observed sequence. The only difference between the 

two algorithms, is that when two paths come together, their probabilities are added, 

instead of keeping only the maximum probability. Using the probability of the output 

sequence given each HMM, one can also determine which of several HMM's is most 

likely to have produced an observed sequence. Finally, in the problem we wish to 

solve, we assume that a given observed sequence was produced by some sequence of 

HMM's (for example with each phoneme represented by one HMM), and we wish to 

determine the most likely sequence of those HMM's to have produced the observed 

output. 

This last problem requires a search algorithm, since the number of possible HMM 

sequences grows exponentially with the length of the sequence. We compare the 

benefits of two possible suboptimal search algorithms in a later section. 

-v - - -7 k>V- , • . - . -1, • i. • „ • ,V ,N .% J% .% ./. .-. .•-.-. ,..-.. 
-•.- -_-A^J-T 
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4.   MODELING PHONEMES IN CONTEXT 

The different acoustic-phonetic units that have been proposed to account for 

phonetic context are, in fact, just trying to model the coarticulatory effects of 

adjacent phonemes on each other. There is not necessarily any significant importance 

in the units themselves. Therefore we have chosen to return to a model of the 

acoustics of each phoneme, but to take into account explicitly the phonetic context in 

which it appears. 

W 
vs.. 

4.1   Triphone Context Model 

As an approximation to modeling the phoneme in all possible phonetic contexts, 

we have decided to take into account the immediately prec.ding and following 

phonemes. We call this a triphone context model, although it is really only a model 

for the middle phoneme conditioned on the two adjacent phonemes. It is expected 

that this model should account for almost all acoustic effects that are due to phonetic 

context. However, as discussed in the introduction, using a more complex unit results 

in a severe training problem, since there are many such context-dependent units, and 

therefore no longer enough tokens of each to develop a robust acoustic model. 

However, since some sequsnces occur much more often than others, there are enough 

samples of the more commonly occurring triphone contexts. For those triphone 

contexts that have not occurred a sufficient number of times, we could use the model 

for the phoneme that depends on the phoneme to the left ("left context model") 

combined with the model that depends on the phoneme to the right ("right context 

model"). For those left or right contexts that have not occurred, we can use the 

model for the phoneme that is independent of context ("phoneme model"). Thus a 

simple algorithm could choose the context model that is best for modeling the phoneme 

in triphone context depending on the number of training samples of each such model. 

m* 

r* 

4.2   Combining Models 

Rather than choosing among several models, it can be more effective to combine 

the models. For example, the first part of a phoneme is highly dependent on the 

phoneme to the left. Thus it is advantageous to take into account the left context 

model with as few as one or two tokens of that context in the training set. In 

contrast, the middle and last parts of the phoneme are less affected by the left 

context and, therefore, the model for these parts of the phoneme should not consider 

'•">•, 
SM 
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the left context model unless there are a very large number of tokens of that context. 

In addition to the phoneme model, the left and right context models, and the 

triphone model, we can also consider models that are dependent on a class of 

phonemes on one side or the other. For example, the effects of /p/ to the left of /a/ 

could be approximated by a combination of the effects due to preceding labial 

consonants and the effects due to preceding unvoiced plosives. These different models 

are combined with weights that depend on the type of model, the location within the 

middle phoneme, the number of tokens of the model observed in the training, and the 

types or classes of phonemes involved. 

4.3   Interpolated Models 

The solution of combining several different context-dependent models with 

weights that vary according to several factors leaves us with the problem of 

determining the weights to use for each combination of factors. We consider here 

thre» possible solutions: manually derived weights based on intuition, automatically 

derived weights based on a modeling of the training data, and manually or 

automatically derived weights based on a series of recognition experiments. 

While it sounds like a difficult problem to generate a matrix of weights for all 

possible combinations of relevant factors, it was found to be quite straightforward 

(requiring about 1 hour), to arrive at a reasonably consistent set of weights that 

exhibited the desired behaviors. • 

The automatic solution we considered was a "Deleted Estimation" technique, using 

the   forward-backward   algorithm.      This   procedure   has   been   used   to   smooth   the A- 

transition   prrbabilities   rf   the   stochastic   grammar   in   the   IBM   speech   recognition & 

system [3].     The  procedure  entails  dividing  the  training  data into  two  groups.     The ,'•".; 

first set is used to estimate the pdf's using the forward-backward algorithm (using an ■.■;■*; 

initial set of weights for combining models).    Then, the second set of data is processed ■.:'-. 
by the forward-backward algorithm, but in this case, the pdf's are kept fixed and the 

weights are optimized. This procedure may be repeated until the weights converge. If 

training data is limited, a jackkmfing procedure can be used. The forward-backward 

algorithm will determine the weights that maximize the predicted probability of the 

second training set, given the pdf estimates derived from the first.    In this way, the . ■" 

weights   are   derived   to   maximize   the   robustness   of   the   combined   models   for   the A 

io ■:'■; 

r =: ■ 
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modeling problem. Thus it is hoped that the weights will reflect the importance of the 

different pdfs to the whole mudel and the degree of confidence one has in each pdf 

estimate based on the number of observations of that context. This deleted estimation 

procedure {named so because some of the training data has been deleted) requires 

large amounts of computation. Carefully considered constraints must be placed on the 

final set of weights in order that they will exhibit the desired behavior. 

.!>  , 

,-,' 

The third option of using recognition experiments to determine the weights 

should theoretically result in the best performance. However, the computation needed 

is indeed excessive, and we have not used this method except in a limited way. For 

the manual method, we have run a few experiments with the purpose of optimizing the 

weights. Small improvements can be made by this method. m 

Ci 
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5.   TRAINING AND RECOGNITION SYSTEMS 

In   this   section,   we   describe   the   algorithms   used   in   all   of   the   recognition 

experiments described below. 

•-•. 

5.1 Analyst! 

Input speech is lowpassed at 10 kHz and sampled at 20 kHz. Mel-frequency 

cepstral coefficients (MFCC) are computed as follows. Every 10 ms, a 20 ms window of 

speech is multipled by a Hamming window. The log power spectrum is computed via a 

512 point FFT. The log power spectrum is warped according to Mel-frequency bands, 

resulting in a new array. An inverse FFT is then used to produce 14 real Mel- 

Frequency cepstral coefficients (MFCC) for each 10 ms analysis frame. Some of the 

training data is used with a nonuniform binary clustering algorithm [14] to produce a 

representative set of MFCC vectors. Each MFCC vector in the training and test sets is 

then classified as one of the vectors. 

5.2 Variable-Frame-Rate 

To save computation, strings of up to 3 identical vector codes are compressed to 

1 observation. This crude variable frame rate (VFR) compression was found to reduce 

all computation by a factor of 2 with no loss in performance. We have not 

experimented with more elaborate VFR schemes. 

5.3 Training 

Some of the speech material to be used for training data is carefully labeled, 

indicating the beginning frame of each phoneme. This labeled data is used to form an 

initial estimate of the probability density functions (pdf) for each phoneme. 

Unobserved spectral probabilities are set to a low, nonzero value. Initially, the 3 pdf's 

in the HMM for a phoneme are all assumed to be equal. The transition probabilities 

emanating from each node are also assumed to be equal. Finally, all the context- 

dependent HMM's for each phoneme are set equal to the single, context-independent 

model for each phoneme. 
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The remainder of the training data is transcribed with a phonetic sequence (no 

time labels). The complete set of training data is then processed with the Forward- 

Backward algorithm. In each pass of the Forward-Backward algorithm the parameters 

of the models are updated such that the probability of training sequences given the 

model increases. The program is run over the entire training set until this estimated 

probability has started to converge. This typically requires 5 to 6 passes. 

Due to the large number of models being trained, dozens of difficult 

implementation details had to be solved in order for the program to be able to run for 

a single sentence at a time on a VAX 11/760 in a reasonable amount of time (CPU time 

equal to 4 times the speech time), and with a virtual memory limitation of 12 

Megabytes. 

After each pass of the forward-backward algorithm, each of the pdf's is 

reestimated and the low values are again clipped to avoid the problem of probabilities 

equal to zero. The clipping value used depends on the number of spectra in the pdf 

and the amount of training data. 

5.4   Recognition 

Once the HMM's have been fully trained, the recognition experiments can be 

performed. The recognition program attempts to find the sequence of phoneme models 

that are most likely given the observed sequence of spectra in a test utterance. In 

addition to the information in the pdf's, we also have information regarding the 

relative likelihood of different phoneme sequences.   Thus, using Bayes' rule: 

pCphoneme seqispectra) = p(phoneme seq) x P(spectra[phoneme seq)     (1) 
p(spectra; 

Assuming that the probability of the phoneme sequence can be modeled as a first 

order Markov chain, and that the pdf's of the spectra during a phoneme depend only 

on the phoneme and the two neighboring phonemes, this can be rewritten as: 

13 
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p(phi|phi_1) \Power      p(Sp in ijph^^p^.ph^p 

^) p(ph seq sp)   -       FI     1 ——  I x ~ rr—r—t  (3) ' ~l '     offset / p(spectra in ph^^) 

5.5   Search Strategies 

There are several possible search strategies thai one may use to find the most 

likely sequence of phonemes in a sentence. The two that we have considered are a 

"best-first" search strategy and a time synchronous "beam search". 

14 
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where "sp in i" means the spectra that occur in phoneme i. )^M 

One  might think that  the  above  statement and sufficient  computing would then r'c 

result in a well-defined "optimal" answer. However, one can clearly see that this 

estimate of the probability of a phoneme sequence decreases as more phonemes are 

added to the theory.   This is due to the the Markov assumption and the incomplete set • 

of acoustic features used. Thus there must be some ad hoc terms added to allow us 

to determine how many phonemes there are in the sequence. It is also not clear how 

"important" the phoneme sequence information is relative to the spectral information. r-[.[ 

There is no reason to believe that relative importance assigned by the above equation 

is correct. For example, if we had analyzed the speech using a 5 ms frame shift 

instead of a 10 ms frame shift, there would be twice as many spectral terms for the 

same number of phoneme sequence terms. Therefore, we use two ad hoc factors to 

solve this problem. Each phoneme sequence probability (first order Markov 

probability) is divided by an "offset" roughly equal to a higher-than-average value 

(somewhere in the range of 0.1 to 0.2). Then, the divided probability is raised to a 

power (usually iu the range 1.5 to 2) to make it of proper importance relative to the 

spectral pdf's. The particular optimal values for these parameters are determined 

empirically to result in the proper balance between deleted and inserted phonemes, 

while maintaining the highest possible performance.    Thus the equation is now; 

ML 
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5.5.1   Best-First Search 

The best-first strategy maintains a list or stack (usually a tree) of theories for 

different phoneme sequences. Then, given an evaluation criterion, it advances the 

most promising theory by all possible next phonemes. The updated theories (which are 

now longer by one phoneme) are replaced on the stack and the procedure is 

continued until a complete theory is found. If the evaluation criterion is non- 

increasing - that is, if adding another phoneme to a theory is guaranteed not to 

increase the theory score - as with probabilities, 'hen the simple algorithm can be 

used. This algorithm always extends the best theory. When the best theory spans the 

whole utterance, it can be guaranteed to be the best answer (according to the scoring 

function). Unfortunately, this algorithm suffers from "thrashing", since it continually 

switches theories because extending a theory usually brings it below some other 

shorter theories. Theory normalization procedures must be used to properly weigh the 

score and the length of the different theories. One must be careful to "merge" 

theories that have arrived at the same time in the utterance with the same 

constraints as to the following theories. This general strategy has the theoretical 

advantage that it saves computation because it spends effort where it appears to be 

most likely to pay off. However, in the case of phoneme recognition, the overhead 

incurred is very expensive, and this may not be the best strategy. 

to. 

Implicit in the notion of a theory is the concept of when the last phoneme in 

that theory has ended. The computation of alignments of spectral sequences through 

the HMM for a phoneme must be performed until there is little chance that the 

phoneme could extend any further. Since phonemes are relatively short events, the 

extra computation is large compared to the length of the phoneme. The decision of 

when the phoneme is over is complicated and is prone to error. 

The very nature of the best-first search requires that theories of unequal 

length must be compared. This is difficult to do, since the different theories üo not 

contain the same amount of evidence. While ad hoc factors can make the comparison 

easier, it is always necessary to consider many unlikely theories "just in case" they 

will turn out to be the best. 

The coordinated stack and tree data structures that are necessary for the best- 

first search are quite complicated, compared to the simple dynamic programming 

involved in comparing a single model to the spectral sequence. 

15 
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Finally, since the decision of which theory to process next is inherently 

sequential, it is difficult to get large improvements in speed by the use of large 

numbers of multiple processors. The simple algorithm of always processing the first 

several theories on the stack in parallel will become inefficient when the number of 

processors is more than a few. 

Ä 

e 

5.5.2   Time-Synchronous Beam-Search 

The time-synchronous beam search considers the set of phoneme models as 

being combined in one huge HUM. For each model there are five states, three of 

which must be "updated" for every observed spectrum. This means that each model 

will also propagate a score to every possible following model in each frame. Whenever 

two or more paths come together within a phoneme model, their probabilities are 

added. However, when two different phoneme models propagate to the same other 

phoneme model, only the best is remembered. The dynamic programming process is 

performed until the end of an utterance or until silence has been verified. Then, the 

best sequence of phoneme models through the large HMM is determined and reported. 

In principle, this approach considers all possible sequences of phoneme models. 

The process described above is most similar to the "one-pass" dynamic 

programming process used for connected word matching by Bridle [15] and Jouvet [16]. 

However, there is one theoretical difference that must be considered. Since we add 

the contributions of diff&rent paths coming into the same state of the HMM, rather 

than keeping only the best path, we cannot guarantee that this procedure will always 

find the most likely sequence of models. The process we describe is somewhere in 

between the Viterbi process and the correct solution of the most likely sequence of 

models. We have found, however, that the answers that result always are the same in 

all three cases. 

Now, let us consider the merits of this time-synchronous process. First, the 

computation involved is extremely simple and repetitive. It consists simply of updating 

the many thousands of states in all the models. Therefore, it is quite easy to program 

on an array processor or a microprocessor chip. In principle, it finds an "almost 

optimal" sequence, without having to worry about whether the search was conservative 

enougn. If a suboptimal search is desired, it is quite easy to prune out most of the 

theories simply because they are sufficiently below the best theory in the frame. All 

cmparisons of different theories are based on the same amount of input information, 

and thus a very tight pruning threshold is possible without changing the final answer. 
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One can easily verify, simply by varying the pruning threshold, what the relation is 
between the threshold and the probability of getting a different answer than the 
optimal search. 

Because the process is time-synchronous, a simple reordering of all the pdf's by 
spectrum (rather than by model) makes it possible to deal with a small subset of the 
data (probabilities for the HMM's), at any time. Thus, in our case, where the pdf's are 
stored on a disk, the amount of disk I/O is greatly reduced. Since the recognition is 
performed left to right, the delay from the end of an utterance to an answer is small 
and fixed. 

Finally, since the pruning procedure is based on a single global threshold for 
each frame, it is possible to have as many independent processors as desired, each 
working on different models, and still get savings proportional to the number of 
processors. Of course, care must be taken that the models in a given processor are 
maximally different so that all processors will be doing about the same amount of 
work. 

17 
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6.   EXPERIMENTS WITH E-SET 

In this section we describe a set of preliminary experiments performed to 

illustrate the effect of using phonetic context. The E-Set consists of the 9 letters of 

English that end with the phon-^e /i/; B.C.D.E.G.P.T.V.Z. A single speaker said each of 

the 9 letters in isolation. The set of 9 letters was repeated 40 times. The speech was 

analyzed as described above, and each spectrum was represented as one of 64 MFCC 

vectors. At this point we would like to emphasize that the particular numerical 

result», cited here are not of any importance in themselves. Rather, the differeuces in 

performance between experimental conditions is indicative of the usefulness of the 

algorithms suggested. 

For the E-Set, the models for the consonants do not depend on phonetic 

context, since they always appear preceded by silence, and followed by /i/. The /i/ 

phoneme, however, appears with 9 different left contexts. We call the model that 

depends on the phoneme to the left th« "left-context" model. 

Figure Z shows the results of the three experiments. The horizontal axis 

represents the amount of training speech used (tokens per letter). The circles show 

the performance where only phoneme models are used. In this case, with one token of 

each letter, there are 9 tokens of the phoneme /!/. The squares show the 

performance where a separate model is used for each left context. For one token of 

each letter, there is only one token of each context-dependent model of /i/. As can 

be seen, with only 1 token per letter, the context model performs very poorly (61%), 

while the corresponding experiment using the phoneme model (with 9 tokens of /i/), 

achieves 79%. The poor results of the context model can be attributed to the fact 

that, with 1 token, it is difficult to estimate a 64-bin discrete pdf, and the model for 

the last part of /i/ is not very dependent on the phoneme to the left. When the 

number of training samples is increased to 4 or 10 tokens per letter, the performance 

using the left context luodel improves rapidly to 88%, while the phoneme model 

performance improves to 93%. As more training is made available, the phoneme model 

performance doesn't improve, (presumably because 90 tokens for each pdf in /i/ is 

more than sufficient training). However, the context model performance continues to 

improve to 97% with 20 tokens per letter. 

From these results, one could devise a simple algorithm that used the context 

model only for those cases where there were more than 10 tokens of the appropriate 

context.     For  the  remaining  cases,  only the  phoneme  model would  be  used.     If,   as 
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i FIG.    2.     E-set recognition performance 

discussed in a preceding section, we allow the first part of the phoneme to depend 

more on the left context model, and the other parts to depend mostly on the phoneme 

model, the algorithm would have a lower requirement for the number of tokens for the 

context-dependent model for the pdf nearest the phoneme transition, and a higher 

requirement for the pdf farthest from the transition. 

Finally, we consider the case where continuous weighting factors are used to 

combine the two models. The weights (which were set by hand) are dependent on the 

amount of training as well as the location within the phoneme, as shown in the table 

below. 

With 1 token per letter, the context model cannot add significantly to the 

performance. With 4 tokens, however, the combined model outperforms either model. 

With 10 tokens, the performance has dropped to below that of the phoneme model 

alone. It appears that in this small test, the 10 tokens of training did not produce a 

good model for test data. With 30 tokens, there is sufficient training for the context 

model and, therefore, smoothing with the phoneme model does not help. 
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1 
Left 

Token 
Mid 

per Letter 
Right Left 

4 Tokens 
Mid      Right 

Context 
Phoneme 

0.7 
0.3 

0.0 
1.0 

0.0 
1.0 

0.8 
0.2 

0.2       0.0 
0.8       1.0 

10 Tokens 20 Tokens 

Context 
Phoneme 

Left 
1.0 
0.0 

Mid 
0.5 
0.5 

Right 
0.0 
1.0 

Left 
1.0 
0.0 

Mid      Right 
1.0        0.0 
0.0        1.0 

TABLE 1.     Weight for Left Context Model 

rr 

For the E-set problem, the amount of training for the different left context 

models is always the same. Therefore, the weights ar? also the same for a given 

experiment. However, in natural continuous speech, the frequency of different 

phoneme sequences varies greatly, with some sequences being several orders of 

magnitude more likely than others, therefore the variation of the weights with the 

amount of training will become much more important. 

I 
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| 7.   EXPERIMENTS WITH CONTINUOUS SPEECH 

(-•7 In this section we describe several phonetic recognition experiments carried out 

$2 on unconstrained continuous  speech.     The  speech training  database  for  continuous 

speech  consists of 25 minutes  of speech, containing  a total of 550 sentences.    The 

speech   material   covers   three   different   topics:       office   type    queries    -    budgets, 

messages,   trips,   etc..   Harvard   sentences,   and   children's   books.      The   speech   was 

[' digitized directly into the computer in several recording sessions spaced several days 

apart. 100 sentences were recorded in each session. The training material was later 

transcribed directly from the text without listening, using the common phonological 

rules for flapping, unreleased plosives, etc. 100 of the sentences were labeled 

carefully, with time-aligned phonemes, and used for initial statistics. 100 additional 

test sentences were transcribed with listening. (The purpose for transcribing the test 

material was so that the recognition accuracy could be determined automatically.) 

Table    2    lists    the    phonetic    recognition    performance    for    several    different 

configurations  of the  system.     The table indicates which  models  of phonetic context 

if were used and the corresponding phonetic recognition accuracy.    The accuracy figures 

shown in the table were computed as the percentage of phonemes in the speech that 

'.;■' were  found in  the  output  phoneme  string  in  the  correct  place.     Thus,  the measure 

•* takes into account both substitutions and deletions, but not insertions.    The number 

_ of insertions (which can be controlled by the phoneme sequence weight and offset) was 

M kept constant at around 12%. 

As can be seen, the models that are derived from a combination of the phoneme 

model and either the left or right context-dependent model resulted in significantly 

I better performance than either the context-independent phoneme model or the left- 

.•; context model alone.    The system that used a combination of models dependent on left 

and right context simultaneously did not Improve performance any further.    A careful 

\-i examination of the results showed that including either left context or right context 

produced substantially the same answers, and thus combining them did not result in 

any improvement. Finally, we have tried to improve the performance of the combined 

systems by using a deleted estimation procedure to optimize the weights for the 

combination.    So far, this computationally expensive procedure has not resulted in any 

i* improvement over the performance when the weights are  carefully selected using our 

intuitions about how they should vary as a function of the amount of training and the 

position within the phoneme. 
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C 

Context 
Models 

# spectral 
Templates 

min. of 
Training 

Percent 
Accuracy 

PH 64 5 61 

PH+L 64 5 71 

L 64 5 51 

PH+L+R 64 5 68 

PH+L 128 5 75 

PH 256 5 62 

PH+L 256 5 75 

PH+R 256 5 75 

L 256 5 64 

PH+L 512 5 74 

PH 256 25 62 

PH+L 256 25 79 

L 256 25 71 

TABLE 2.     Phonetic recognition accuracy for continuous speech. 
(PH = phoneme model; L = left-context model; R = right-context model,) 

Other aspects to the results in Table 2 concern the number of spectral templates 

used to represent the whole spectral space for the speaker, and the amount of speech 

data available for training purposes. With only five minutes of training, performance 

improved as the number of spectral templates increased from 64 to 256. However, the 

performance dropped when the number increased to 512 spectral templates. This drop 

in performance may be an indication that the amount of training data was not 

sufficient for the 512-template case. Increasing the amount of training to 25 minutes, 

we see from Table 2 that, for 256 spectral templates, performance improved, especially 

for the case when the phoneme model is combined with the left-context model, to a 

high of 79% phonetic accuracy, with 12% insertions. 
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6.   ACOUSTIC-PHONETIC FEATURES 

As mentioned in the introduction, it is appealing to consider features other than 

the sequence or spectra in distinguishing phonemes. These specialized acoustic- 

phonetic features are computed once over a region imputed to correspond to a 

particular phoneme. While most such acoustic-phonetic features that may be 

proposed are, in fact, usually derived from the sequence of speech spectra, there is 

still a theoretical advantage to using them. An automatic (blind) training procedure 

could be expected to discover the underlying distinguishing characteristics, given 

enough training data. However, the amount of training data needed is prohibitively 

large. If the human researcher, through some special insight gained as a result of an 

understanding of the underlying process, can supply the recognition system with the 

important dimensions, a much smaller amount of training data will be sufficient to 

derive accurate and effective pdf's for discrimination among these phonemes. However, 

since a set of acoustic-phonetic features supplied by a human researcher Is not 

usually sufficient to completely describe the speech, it is advantageous to use the 

spectral representation as a foundation en which to build specific acoustic-phonetic 

distinctions. 

Therefore, we have designed a system in which we can combine both the spectral 

pdf information, and any acoustic-phonetic features that the researcher cares to 

specify, into a single HMM formalism. 

After the three spectral pdf states, there is a sequence of acoustic-phonetic 

feature states. The number of states will be different for different phonemes, and the 

features that are measured in each will also vary with the particular distinctions 

being made. The state actually contains a pointer to a function that will compute the 

desired features, and a set of pdf's for the phonemes or classes that are involved. 

The states are compiled from a text file that indicates how each set of features are to 

be used. The initial pdf for the set of features is derived using the Acoustic-Phonetic 

• Experiment Facility (APEF) [17]. APEF allows a researcher to develop acoustic- 

phonetic features for large databases of labeled speech in a highly interactive manner. 

Once the initial pdf's are specified, the forward-backward algorithm is be used to 

train the pdf's on the ;aine larger database used to train the spectral pdf's. 

The features that can be used fit more closely the type of distinctions with 

which a phonetician might be familiar. For example, the features of voice-onset-time 

and low-frequency energy during a plosive can be used to decide between voiced and 

23 

^^^•MO>:.M^;S :>v-:v: v->\ -^-^^ ^y^Xr-^-i^ ."-J*"-»"^';^:!.-: 



Bolt Beranek and Newman Inc. Report No. 5798 
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unvoiced plosives. Although there are only two 2-Diniensional pdf's in this case, the 

HMM is automatically compiled to contain pointers within each of the 6 plosives to the 
appropriate pdf. 

Since the number and kind of features used for different phonemes are different, 

it is essential that a careful normalization of the contributions of these features be 

included.   The number computed for each of these feature states is therefore: 

p(phoneme 
p(phoneme 

features) 
phone class) 

p(features 
p(features 

phoneme) 
phone class) 

(4) 

That is. given a phone class (for example, unvoiced plosives), we compute an 

adjustment to the conditional probability that the phoneme is /p/, /t/, or /k/, using 

only features relevant to that distinction. After each of these adjustments (which are 

numbers that can be greater or less than 1) are computed for each phoneme, they are 

simply multiplied together with the probability coming out of the spectral HMM. While 

this procedure doesn't make sense in terms of a rigorous formulation of probabilities, 

we have found empirically that these probability adjustments do improve the 

separation among the phonemes intended, with little or no effect on any other 
phonemes. 

At this time we have implemented acoustic-phonetic features for a small number 

of phonetic distinctions. Each one typically can decrease the errors among the 

chosen phonemes by as much as a factor of 2. For example, while the spectral HMM 

system correctly identified 61% of the unvoiced plosives as /ptk/. when the features 

were added, the performance among these three phonemes went up to 85%. 

The results given in the table in the previous section do not include the use of 

acoustic-phonetic features, as we have only implemented acoustic-phonetic features 

for a small number of phonetic distinctions. The process of finding these features for 

the many phonetic distinctions that need to be made will require a large amount of 

human effort, and therefore is expected to take a long time to complete. 
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9.   CONCLUSION 

We have described our progress in developing techniques for phonetic 

recognition in unrestricted continuous speech. Our method, based on a context- 

dependent phonetic hidden Markov model, automatically uses information about 

adjacent phonemes only to the extent thai it has seen examples of that context in 

training, and combines this information with less context-specific models for the 

phoneme. The combined model is shown to result in better performance than either 

model by itself. We have also observed that increasing the number of spectral 

templates from 64 to 256 and the amount of training data from 5 to 25 minutes has 

resulted in improved recognition. We have also devised a formalism that allows us to 

combine the generally useful spectral pdf information with more specifically designed 

acoustic-phonetic features in order to improve the discrimination power among 

particular phonemes. The inclusion of acoustic-phonetic features has made 

substantial improvements in the distinction among the phonemes for which they were 

intended. 

In the future, our research will cover two main areas. First, we must develop 

robust methods to combine the models conditioned on left context with models 

conditioned on right context. Second, there is still much work to be done with 

Acoustic-Phonetic features. We need to adapt c ..r context-dependent modeling 

techniques to these features, and in addition, we must find many sets of acoustic- 

phonetic features to improve the many possible minimal pair distinctions. 
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